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Abstract—In this article, an inter-turn short-circuit (ITSC) 

fault diagnosis and severity estimation method based on 

extended state observer (ESO) and convolutional neural network 

(CNN) is proposed for five-phase permanent magnet 

synchronous motor (PMSM) drives. The relationship between 

fault parameters and motor parameters is analyzed and the 

equivalent model of ITSC faults in the natural reference frame is 

accordingly derived. To achieve fault detection and location, the 

short-circuit turn ratio and short-circuit current are integrated 

as the fault diagnosis index. According to the model of the short-

circuit current, an ESO is designed for the estimation of the fault 

diagnosis index. Further, the sensitivity analysis among fault 

parameters is conducted to evaluate the short-circuit turn ratio 

and the short-circuit resistance. Subsequently, the postfault 

current, back electromotive force, electrical angular velocity, q1-

axis current reference and the fault diagnosis index are selected 

as the input signals of CNN to estimate the short-circuit turn 

ratio. This approach not only resolves parameter coupling 

challenges but also provides a quantitative assessment of fault 

severity. Finally, simulations and experiments under different 

operating points validate the effectiveness of the proposed 

method.① 

Index Terms—Multi-phase drive, Permanent magnet 

synchronous motor, Inter-turn short-circuit, Fault diagnosis. 

I. INTRODUCTION 

ECENTLY, multiphase permanent magnet synchronous 

motors (PMSMs) have become the preferred solution for 

high-reliability electromechanical systems, primarily 

attributed to their advantages of higher power density and 

enhanced fault-tolerant ability over three-phase PMSMs [1]-

[3]. Meanwhile, with the growing emphasis on reliability and 

safety in motor drive systems, substantial research has been 

made toward advanced fault diagnosis and fault-tolerant 

control [4]-[7]. 

Winding insulation failure ranks among the most frequent 

motor malfunctions, accounting for 30%40% of all motor 
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failure cases. Notably, inter-turn short-circuit (ITSC) faults 

constitute a considerable proportion [8]-[9]. Generally, ITSC 

faults originate in winding faults owing to thermal, electrical, 

and mechanical stress [10]. Especially for PMSMs, the 

magnetic field generated by ITSC faults is usually stronger 

than the coercivity of the magnet, which may lead to 

irreversible demagnetization [11]. In addition, a large current 

circulating in the short-circuit loop would result in a severe 

temperature rise, accelerating the aging and embrittlement of 

insulation materials. If not handled in time, an ITSC fault may 

cause an entire winding failure and even endanger personal 

safety [12]. Therefore, the detection and location of ITSC 

faults at the early stage have emerged as a critical topic for 

improving the reliability of PMSM drive systems [13]. 

Existing research for ITSC fault diagnosis of PMSMs can 

be mainly divided into three categories: signal-based methods, 

model-based methods and artificial intelligence (AI)-based 

methods [14]-[15]. 

Most of the signal-based methods depend on stator current 

signals, including fundamental components, zero-sequence 

components and negative-sequence components [12]. As 

these methods rely on the amplitudes of stator currents, they 

may cause false alarms under low-load conditions. Spectrum 

analysis, such as fast Fourier transformation (FFT) [16], 

wavelet transformation [17], and Hilbert-Huang 

transformation [18], is used for extracting certain sequences 

of signals. Nevertheless, these methods require a batch of 

samples to analyze signals, which may result in delayed fault 

estimation. 

Model-based methods are further categorized into state 

estimation and parameter estimation [11]. The former 

compares the system states estimated by observers with the 

measured ones. ITSC faults can be identified and located by 

analyzing and evaluating residual signals. Kalman filter, 

Luenberger observer and disturbance observer are commonly 

applied in ITSC fault diagnosis. In [19], both the location and 

the severity of ITSC faults are estimated through an extended 

Kalman filter and an unscented Kalman filter. The voltage 

distortions are estimated by a Luenberger observer in [20]. 

The fault characteristic signal is constructed in terms of the 

second harmonic component for ITSC fault diagnosis. In [21], 

a fault diagnosis method based on a disturbance observer is 

proposed by using the obtained disturbance signals. However, 

the above-mentioned research predominantly estimate the 

integration of short-circuit current and short-circuit turn ratio 

without achieving decoupling. Meanwhile, the estimation of 
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short-circuit resistance remains unaddressed [20]-[22]. 

Parameter estimation facilitates fault diagnosis by comparing 

the estimated critical parameters under fault conditions with 

the values under normal states. A dual-signature diagnostic 

framework with dynamic bandwidth synchronization for dual-

loop regulated systems is established in [23]. The second 

harmonic ratio in the DC bus voltage is defined as the first 

fault indicator when only the bandwidth variation of the 

current controller is considered. The second indicator ensures 

robustness and enhances ITSC detection accuracy under 

variations of current and voltage controller bandwidths by 

weighting and summing the second harmonic components 

from the DC bus voltage, q-axis current and voltage. In 

comparison, state estimation methods exhibit lower 

dependency on precise motor parameters while demonstrating 

enhanced adaptability to system variations, thus offering 

superior reliability in dynamic operating conditions. 

Nevertheless, parameter estimation methods face limitations 

in fault diagnosis due to the susceptibility to motor parameter 

variations. 

Very recently, fault diagnosis methods based on AI have 

attracted extensive attention due to their superior learning 

abilities, effective data processing and robust generalization 

performance [24]-[26]. In motor fault diagnostics, three deep 

learning models demonstrate superior performance: 

convolutional neural networks (CNNs), residual neural 

networks, and conditional generative adversarial networks 

(CGANs). In [6], a multi-scale convolutional residual network 

incorporating dual attention mechanisms for ITSC fault 

diagnosis is developed, where a spatial attention residual 

module is strategically integrated to strengthen discriminative 

feature extraction while counteracting gradient dissipation. To 

alleviate the heavy reliance on extensive datasets, CGAN is 

developed based on CNN to expand and collect datasets in 

[26], and then a deep Q-network (DQN) -driven diagnostic 

architecture is implemented. In contrast to signal-based and 

model-based methods, AI-based methods avoid the need for 

precise mathematical models, enable automatic feature 

extraction for analysis and prediction, and demonstrate 

superior diagnostic efficiency with enhanced robustness. 

Since observers require only minimal fault information 

while AI excels in handling nonlinear and u N·modeled 

dynamic systems, this article proposes an ITSC fault 

diagnosis method that combines an extended state observer 

(ESO) and a CNN for five-phase PMSMs. Through analyzing 

the relationship between short-circuit current and fault 

parameters, a fault diagnosis index is accordingly derived 

based on the established short-circuit model. Subsequently, an 

ESO is designed to achieve real-time observation of the 

diagnostic index, enabling online detection and location of the 

ITSC fault. By implementing a sensitivity analysis, five fault 

indicators are selected as the input of the CNN to estimate the 

short-circuit turn ratio. Therefore, short-circuit current and 

resistance are decoupled based on the obtained short-circuit 

turn ratio. As a result, the proposed method enables the 

estimation of short-circuit current, turn ratio, and resistance, 

achieving real-time quantitative assessment of fault severity. 

II. ITSC FAULT MODEL OF FIVE-PHASE PMSM 

A. Mathematical Model 

The equivalent circuit model with an ITSC fault in phase-A 

of a five-phase PMSM is shown in Fig. 1. Assuming that the 

total turns number of each phase winding is N with Nf 

representing the number of short-circuit turns, establishing the 

short-circuit turn ratio μ=Nf/N. The insulation degradation 

level is quantified by the fault resistance Rf, while if is defined 

as the short-circuit current. Rs and Ls are the phase resistance 

and phase inductance. The back electromotive force (EMF) 

for each phase is denoted by ex (x = a, b, c, d, e). 

 
Fig. 1. Equivalent circuit model with ITSC fault in a five-phase PMSM. 

Due to the short-circuit fault, the phase-A winding is 

divided into short-circuited turns and unfaulty turns. Rah, Lah, 

and eah are the resistance, inductance, and back EMF of the 

healthy turns, whereas Raf, Laf, and eaf represent those of the 

short-circuited turns, respectively [21]. Mahaf is the mutual 

inductance between the healthy turns and the faulty turns of 

phase-A winding. According to the relationship between 

resistance, inductance, back EMF and the short-circuit turn 

ratio, the following expressions can be derived as: 
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The ITSC failure is simulated by injecting a short-circuit 

current if into a specific winding. The equivalent circuit model 

under the ITSC fault condition is considered an extension of 

the normal five-phase PMSM model. Neglecting nonlinear 

factors and magnetic saturation and the mutual inductance 

between the faulty phase and other phases, the voltage of a 

five-phase PMSM under ITSC faults can be deduced as: 
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where ux (x = a, b, c, d, e) and ix (x = a, b, c, d, e) indicate 

phase voltage and current, respectively. 

Neglecting the reluctance torque, the output torque under 

ITSC fault is given as: 

a a b b c c d af f

ef

e

m

d ee i e i e i e i e i e i
T






   
  (3) 

where ωm is the mechanical angular velocity. 

B. Short-circuit Current Analysis 

According to (2), the voltage of the short-circuit loop is 

obtained as: 
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The equation above can be regarded as a first-order 

nonhomogeneous linear differential equation with constant 

coefficients. Hence, the short-circuit current is calculated as: 
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where ωe is the electrical angular velocity. 

As presented in (5), Rs and Ls are motor parameters. When 

a motor operates in steady-state conditions, the electrical 

angular velocity, amplitudes of phase currents, and back 

EMFs remain constant. Therefore, the magnitude of the short-

circuit current exhibits strong parametric dependence on both 

short-circuit resistance Rf and the short-circuit turn ratio μ. In 

the faulty circuit, the thermal effect generated by the 

circulating current may accelerate insulation damage and even 

cause phase-to-phase short-circuit faults. Hence, the real-time 

monitoring of short-circuit current is crucial for accurate fault 

diagnosis. However, short-circuit current is closely related to 

speed and load, and its amplitude and frequency are sensitive 

to variations in operating points. To precisely assess the 

severity of ITSC faults, the short-circuit turn ratio is regarded 

as the characteristic indicator of fault severity in this paper. 

Nevertheless, this variable is typically treated as an unknown 

parameter due to challenges in direct measurement [10]-[15]. 

III. PROPOSED FAULT DIAGNOSIS AND SEVERITY 

ESTIMATION 

To achieve the diagnosis and severity estimation of ITSC 

faults in five-phase PMSMs, this paper develops a fault 

parameter identification method based on ESO and CNN, the 

structure of which is illustrated in Fig. 2. The fault diagnosis 

module consists of observation and identification components. 

Firstly, the ESO is designed to observe the integration of the 

short-circuit turn ratio and the current for fault detection and 

location. Secondly, the CNN is utilized to further estimate the 

short-circuit turn ratio, thereby assessing the fault severity. 

The control strategy adopts model predictive current control, 

which has been extensively applied in multi-phase motor 

fields due to its simple structure and effective handling of 

harmonic constraints [27]-[28]. 

 
Fig. 2. System control structure and diagnostic algorithm. 

A. Parameters Design and Stability Analysis 

Combining (2) and (3), the fault diagnosis index μif can be 

expressed as: 
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For the convenience of observation, exux is taken as the 

input u(t) of the observer. Thus, the time-domain differential 

equation based on (6) can be formulated as: 
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According to (7), a linear ESO with state variables xf and F 

can be constructed as: 
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where 1 f
ˆz x  and 2

ˆz F  represent the estimated value of xf 

and F. err is the estimation error, β1 and β2 are the error 

feedback gains of ESO. The structure of ESO is illustrated in 

Fig. 3. 

 
Fig. 3. Structure of ESO. 

In this method, the error feedback gain determines the 

estimation accuracy of the ESO, thus the design of β1 and β2 is 

crucial. By rewriting (8) in matrix form, it can be represented 
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where ŷ represents the estimated value of y, 
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Based on (9), the characteristic equation of ESO is given 

as: 

  2

1 2| |s s s     I A DC  (10) 

where I represents the identity matrix, and s is the 

characteristic root of the system. To ensure that all 

characteristic roots are negative and that there is only one 

adjustment parameter ω0, the observation gains are set as 

β1=2ω0 and β2=ω0
2
. ω0 is the bandwidth of ESO. Generally, if 

ω0 is too small (z1 and z2 are close to 1), the dynamic 

performance of the observer deteriorates. Conversely, if ω0 is 

too large (z1 and z2 are close to 0), it may degrade the system’s 

stability margins and induce closed-loop instability [29]. 

Through ESO, the integration of the short-circuit current 

and turn ratio can be observed, achieving the diagnosis of 

ITSC faults. To decouple these two variables and calculate the 

short-circuit resistance, this paper further designs a parameter 

estimation algorithm based on a convolutional neural network. 

B. Estimation of Fault Parameters based on CNN 

The short-circuit turn ratio serves as an evaluation index for 

fault severity. To accurately estimate the short-circuit turn 

ratio, the parameters associated with ITSC faults and easily 

measured are chosen as training inputs for the CNN. 

Subsequently, data under various operating conditions are 

collected, improving the accuracy of estimation. Through the 

estimated short-circuit turn ratio, the fault severity is 

evaluated, enabling the estimation of the short-circuit current 

and the short-circuit resistance separately. 

1) Convolutional Layers 

CNNs, a prominent deep learning architecture, have been 

extensively utilized across engineering domains including 

machine vision, time-series analysis, and multidimensional 

signal interpretation. It mainly consists of five layers: the 

input layer for raw data ingestion, the convolutional layer 

performs localized feature abstraction through kernel 

operations, the pooling layer executes spatial dimensions via 

nonlinear compression, the fully connected layer synthesizes 

hierarchical representations and the output layer makes 

decisions based on the integrated features. Fig. 4 illustrates 

the schematic structure of a CNN. 

Assuming the input and output of the CNN are X and Y. 

Their functional correspondence is mathematically 

characterized by: 

     3 2 1 1 2 3F f f f Y X Θ X θ θ θ∣ ∣ ∣ ∣  (11) 

where fi(X|θi) (i = 1, 2, 3) represent the calculation process of 

the convolutional layer, pooling layer and fully connected 

layer, respectively. Θ represents the set of parameters θ. 

Therefore, the essence of CNN is to extract and transform 

features of input data through a series of hierarchical 

structures and then achieve dimensionality reduction. 

 
Fig. 4. Architecture of a CNN. 

2) Sensitivity Analysis 

According to (5) and (6), the short-circuit turn ratio 

constitutes a complex function of multiple variables including 

motor parameters, system input and output signals, and short-

circuit parameters. Therefore, it is essential to select variables 

that predominantly affect the short-circuit turn ratio. 

Therefore, a one-dimensional CNN is used to establish a 

mapping relationship between the fault indicators and the 

short-circuit turn ratio μ. The selection process for fault 

indicators is as follows. 

1) The short-circuit current is a characteristic variable that 

fundamentally characterizes ITSC failure severity, yet its 

diagnostic utility is constrained by inseparable coupling fault 

parameters. Consequently, the obtained fault diagnosis index 

μif through ESO is adopted as the first indicator. 

2) Considering the ITSC fault is set in phase-A, parameters 

such as current, back electromotive force, and voltage of this 

phase exhibit significant variations. In most of the research on 

fault diagnosis, current and back EMF are usually regarded as 

the diagnostic features. Therefore, the faulty phase current ia 

and back EMF ea are selected as the second indicator and the 

third indicator. 

3) Furthermore, the ITSC fault can also cause an elevation 

of torque ripple. The amplitude and frequency of the torque 

ripple are related to the load and the electrical frequency, 

respectively. Therefore, the q1-axis current reference iq1
ref

 

associated with the torque and the electrical angular velocity 

ωe are selected as the fourth indicator and the fifth indicator. 

3) Fault Severity Estimation Process 

The fault severity estimation process for ITSC is illustrated 

in Fig. 5, with the specific operational steps as follows. 

1) Data processing: To extract the characteristic signals of 

fault indicators, the FFT is used to calculate the real-time 

amplitude of the selected fault indicators. To mitigate the 

influence of varying operating conditions on estimation 

accuracy, the data is normalized. The ratios of the amplitudes 

calculated under fault conditions to the steady-state values 

under normal operation are adopted as sample data. 

2) Constructing and training CNN: Configure network 

parameters such as the learning rate, maximum number of 

.
..

.
..

.
..

.
..

.
..

...

.
..

.
..

.
..

Input 

Layer

Convolutional 

Layer

Pooling 

Layer

Fully Connected 

Layer

Output 

Layer



.

228 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 9, NO. 2, JUNE 2025 

iterations, number of convolutional layers, etc. Input training 

and test samples, and update the network parameters through 

convolution, pooling, activation, and regression operations. 

Finally, obtain the trained CNN model for online estimation 

of short-circuit turn ratio μ. 

 
Fig. 5. Fault severity estimation process based on CNN. 

IV. SIMULATION VERIFICATION 

For validation of the proposed ITSC fault diagnosis method 

and severity estimation in this article, the ITSC fault model of 

the five-phase PMSM has been built in Matlab/Simulink. The 

parameters of the five-phase PMSM are presented in Table I. 

The sampling frequency of the simulation is 500 kHz, with 

the current loop bandwidth set to 20 kHz. To enhance 

disturbance rejection capability, the ESO bandwidth is 

adjusted to be higher than that of the current loop, thereby 

producing an angular bandwidth ω0=40200π rad/s and gains 

β1=80400π, β2=(40200π)
2
. 

TABLE I 
PARAMETERS OF THE FIVE-PHASE PMSM 

Parameter Symbol Value 
Rated speed/(r/min) n  600 
Rated torque/(N·m) Ten  17 

Rated phase current/A In 4 
Permanent magnet flux-linkage/Wb ψf 0.035 

Stator resistance/Ω Rs 0.15 
d1-axis inductance/mH Ld1 2.5 
q1-axis inductance/mH Lq1 2.9 
d3-axis inductance/mH Ld3 2.5 
q3-axis inductance/mH Lq3 2.5 
Number of pole pairs pr 18 

 

A. Fault Diagnosis of ITSC 

Simulation results are depicted in Fig. 6. The five-phase 

PMSM operates stably with a speed of 500 r/min and a load 

of 5 N·m. An ITSC fault occurs at the time instant of 0.07 s. 

The short-circuit turn ratio is set as 0.3, while the short-circuit 

resistance is set as 0.2 Ω. 

In Fig. 6, the phase currents become unbalanced under the 

ITSC fault. The total harmonic distortion (THD) of the phase-

A current increases from 5.16% to 9.14%, and the torque 

ripple increases from 2.20% to 46.33%. The observed 

waveforms of the fault diagnosis index are presented in  

Fig. 6(c). It can be seen that when the ITSC fault occurs, the 

amplitude of the fault diagnosis index μif increases from 0 to 

9.66 A with a frequency of 150 Hz. The observed value is 

consistent with the actual value, demonstrating that the ESO 

can precisely identify the fault diagnosis index. With the 

obtained diagnosis index μif, the ITSC fault can be diagnosed 

and located. 

 

 

 
Fig. 6. Simulated waveforms by the proposed diagnostic method. (a) Phase 

currents. (b) Torque. (c) Fault diagnosis index. 

B. Performance of Severity Estimation 

To verify the accuracy of CNN in estimating the short-

circuit turn ratio, the data under the following four operating 

points is collected: 1) 450 r/min and 5 N·m, 2) 450 r/min and 

7 N·m, 3) 500 r/min and 5 N·m, and 4) 500 r/min and 7 N·m. 

The short-circuit turn ratio μ varies from 0.300 to 0.890 

with an interval of 0.01. A total of 240 training sample sets 

are collected from the operating conditions mentioned above 

and partitioned into 168 training sets (70%), 36 validation sets 

(15%) and 36 test sets (15%). 

The short-circuit resistance is maintained at a fixed value of 

0.2 Ω, and the short-circuit turn ratio is set to 0.5 and 0.8. The 

absolute values of the deviations between the estimated values 

and the actual values are presented in Table II. The results 

show that the trained CNN model can well estimate the short-

circuit turn ratio with a deviation of less than 0.002 and the 

average accuracy is 99.48%, verifying that the proposed 

method is effective. 

According to the short-circuit turn ratio estimated by CNN, 

the short-circuit current if can be further deduced. As 

demonstrated in Fig. 7, the waveform before t=0.16 s is the 

fault diagnosis index μif and the waveform after t=0.16 s is the 

estimated short-circuit current ifp. Thus, the fault characteristic 

μif can be decomposed into two independent parts: short-

circuit turn ratio and short-circuit current. Fig. 7(a) presents 

the influence of different short-circuit turn ratios on the 

amplitude of the short-circuit current when the short-circuit 
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resistance is specified as 0.2 Ω. It can be observed that as the 

short-circuit turn ratio increases, the amplitude of ifp shows a 

decreasing trend, being 35.97 A, 23.09 A and 16.66 A, 

respectively. Fig. 7(b) shows the influence of different short-

circuit resistances on the amplitude of the short-circuit current 

when the short-circuit turn ratio is fixed at 0.5. As the short-

circuit resistance increases, the amplitude of the short-circuit 

current shows an increasing trend, which is 18.01 A, 23.09 A 

and 30.17 A, respectively. 

TABLE II 
ESTIMATION ERRORS OF TURN RATIOS UNDER DIFFERENT OPERATING 

CONDITIONS 

Actual value Condition Average value Error 

0.500 

450 r/min, 5 N·m 0.499 0.001 
450 r/min, 7 N·m 0.500 0 
500 r/min, 5 N·m 0.499 0.001 
500 r/min, 7 N·m 0.501 0.001 

0.800 

450 r/min, 5 N·m 0.800 0 
450 r/min, 7 N·m 0.798 0.002 
500 r/min, 5 N·m 0.800 0 
500 r/min, 7 N·m 0.801 0.001 

 

 
Fig. 7. Short-circuit current under different fault parameters. (a) Short-circuit 

turn ratio variation. (b) Short-circuit resistance variation. 

However, the relationship among short-circuit current, 

resistance and turn ratio is not monotonically increasing or 

decreasing [30]. In some cases, an increase in the short-circuit 

resistance or short-circuit turn ratio may lead to an increase in 

the short-circuit current, while in other cases, the opposite 

phenomenon may occur. It may be due to the asymmetry of 

motor parameters owing to ITSC faults, which results in a 

more complex electromagnetic field distribution. Besides, the 

nonlinear issues in motor drives, such as saturation effects and 

hysteresis effects, and operation conditions would also affect 

the relationship. 

In summary, it can be concluded that both the short-circuit 

resistance and the short-circuit turn ratio are important factors 

affecting the short-circuit current. To more comprehensively 

analyze the trend of the short-circuit current, both the short-

circuit resistance and the short-circuit turn ratio need to be 

taken into account. 

Given the known short-circuit turn ratio and short-circuit 

current, (5) can be written as: 
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pm e
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(12) 

where λpm is the amplitude of the permanent magnet flux 

linkage. 

In Fig. 8, the short-circuit resistance Rf is calculated using 

(12) in real-time. The speed is set to 500 r/min with a constant 

load of 5 N·m. A short-circuit fault occurs at 0.07 s and the 

short-circuit turn ratio μ is set as 0.3. 

 
Fig. 8. Online calculation of short-circuit resistance. 

When the short-circuit resistances are 0.20 Ω, 0.25 Ω, 0.30 

Ω, and 0.35 Ω, the calculated short-circuit resistances Rfc are 

0.18 Ω, 0.22 Ω, 0.27 Ω, and 0.35 Ω respectively. The results 

indicate that the calculated Rfc match the actual values 

satisfactorily with a deviation of less than 0.02 and the 

average accuracy is 92%. 

V. EXPERIMENTS 

To further prove the diagnostic capability of the proposed 

method, StarSim MT3200 test platform is used to conduct 

real-time simulation experiments. Fig. 9 depicts the 

experimental setup, which includes the host computer, 

StarSim MT3200 and dSPACE1202. The five-phase voltage 

source inverter circuit is constructed through a real-time 

hardware-in-loop system. The control algorithm and five-

phase PMSM model are completed by dSPACE1202. The 

sampling frequency used in the experimental test is 50 kHz. 

The real-time simulator and controller are connected through 

actual physical I/O, which transmits signals. The parameters 

of the PMSM are consistent with those used in the 

simulations. The short-circuit turn ratio is set as 0.8 and the 

short-circuit resistance is set as 0.2 Ω. 

 
Fig. 9. Experimental setup. 

A. Performance under Operating Points Variation 

Two tests are conducted to validate the diagnostic method 
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against operating point variations. The dynamic results under 

speed and load variations are respectively captured in Fig. 10 

and Fig. 11. As illustrated in Fig. 10, the five-phase drive 

system operates at a speed of 300 r/min and a load of 17 N·m 

under healthy and ITSC situations. After the occurrence of an 

ITSC fault, all phase currents are amplified to different 

degrees. The THD of phase-A current increases from 8.37% 

to 9.24%, as listed in Table III. Meanwhile, the torque ripple 

escalates significantly, increasing from 2.04% to 24.17%. Fig. 

11 demonstrates the five-phase PMSM operates with a 

constant speed of 550 r/min and a 15 N·m load. Upon the 

appearance of a short-circuit fault, the current THD in phase-

A increases from 10.44% to 11.09%, and the torque ripple 

increases from 4.01% to 23.42%. 

 

 

 

 
Fig. 10. Experimental waveforms under normal and faulty conditions at 

17 N·m and 300 r/min. (a) Phase currents. (b) Torque. (c) Fault diagnosis 

index. (d) Estimated short-circuit turn ratio. 

TABLE III 
THD VALUES OF PHASE-A CURRENT AND TORQUE RIPPLE UNDER NORMAL 

AND FAULT CONDITIONS 

Operating point Condition THD of phase-A 

current (%) 
Torque ripple 

(%) 
n=300 r/min 
Tl=17 N·m 

Normal 8.37 2.04 
Rf=0.2 Ω, μ=0.8 9.24 24.17 

n=550 r/min 
Tl=15 N·m 

Normal 10.44 4.01 
Rf=0.2 Ω, μ=0.8 11.09 23.42 

 
As demonstrated in Fig. 10(c) and Fig. 11(c), the observed 

fault diagnosis index can track the actual value. Upon ITSC 

fault occurrence, the amplitude of the fault diagnosis index μif 

rapidly increases to 15 A. Fig. 10(d) and Fig. 11(d) show the 

real-time estimation of the short-circuit turn ratio. The results 

demonstrate that the estimated value rapidly approaches the 

actual value within 0.02 s. The estimated values of the short-

circuit turn ratio μp obtained are 0.805 and 0.798, respectively. 

It is concluded that this method can quickly and accurately 

estimate the short-circuit turn ratio under the ITSC fault 

condition inferred from the input signals, achieving the 

severity estimation of the ITSC fault. 

 

 

 

 
Fig. 11. Experimental waveforms under normal and faulty conditions at 

15 N·m and 550 r/min. (a) Phase currents. (b) Torque. (c) Fault diagnosis 

index. (d) Estimated short-circuit turn ratio. 

B. Dynamic Performance 

To validate the robustness of the proposed method, 

experiments are implemented under conditions of varying 

speeds and loads. Fig. 12 presents experimental results of the 

speed change from 300 r/min to 500 r/min with a constant 

load of 15 N·m. As the ITSC fault occurs, the amplitude of 

the diagnosis indicator demonstrates a rapid surge to 15 A, 

with observed values closely tracking actual measurements. 

Besides, the estimated short-circuited turn ratio stabilizes at 

0.397 after a transient fluctuation. The mean deviation 

between predicted values and the actual reference value of 

0.400 remains within 0.008, indicating stable diagnostic 

performance under dynamic operational conditions. 

The experimental waveforms of the load stepping from  

8 N·m to 16 N·m with a constant speed of 300 r/min are 

illustrated in Fig. 13. Post-load variation results reveal the 

amplitude increase in both phase currents and the diagnostic 

indicator. Simultaneously, the fault diagnosis index observed 

demonstrates precise tracking performance throughout the 

load variation. Furthermore, estimation results of the short-

circuit turn ratio remain consistent, exhibiting a deviation of 

0.004 from the actual value of 0.700. 

In conclusion, the experimental results verify the 

robustness of the proposed method, demonstrating sustained 

diagnostic stability and achieving an average fault evaluation 

accuracy rate of 98.84% under dynamic operational conditions. 
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Fig. 12. Experimental waveforms under speed variation. (a) Phase currents. 

(b) Torque. (c) Fault diagnosis index. (d) Estimated short-circuit turn ratio. 
 

 

 

 

 
Fig. 13. Experimental waveforms under torque variation. (a) Phase currents. 

(b) Torque. (c) Fault diagnosis index. (d) Estimated short-circuit turn ratio. 

C. Estimation Results 

To assess the estimation algorithm’s accuracy of the 

estimated short-circuit turn ratio across operational 

differences, the short-circuit turn ratio varied within the range 

from 0.300 to 0.850 with an interval of 0.050. Fig. 14 depicts 

the estimation results of the short-circuit turn ratios. The 

absolute value of the largest deviation is 0.036 while the 

others are less than 0.013, which demonstrates that the 

estimation method of short-circuit turn ratio under different 

operating conditions is effective. 

 
Fig. 14. Estimation results under different fault severities. (a) At 300 r/min 

and 17 N·m. (b) At 550 r/min and 15 N·m. 

The comprehensive analysis results indicate that the ESO 

can effectively detect and localize ITSC faults by estimating 

the integration of the short-circuit current and the short-circuit 

turn ratio. Moreover, online estimation results under different 

operating points and fault severities demonstrate that the CNN 

enables rapid quantification of fault severity. Table IV 

provides a comprehensive comparison between the proposed 

method and existing diagnostic approaches, evaluating three 

aspects: fault localization, evaluation of fault severity, and 

fault parameter decoupling. The results demonstrate that the 

developed algorithm exhibits significant performance 

advantages in fault identification, whereas other methods 

exhibit one or more limitations. 

TABLE IV 
COMPARISONS WITH EXISTING WORK 

Method Fault location Severity 
evaluation 

Fault 

parameters 

decoupling 
Method based on voltage 

distortion [20] Yes No No 

Method based on a disturbance 
observer [21] No No No 

Method based on current and 

voltage controllers [23] No No No 

Method based on decision-

making framework [24] Yes Yes No 

Proposed method Yes Yes Yes 

VI. CONCLUSION 

This article proposed an ITSC fault diagnosis and severity 

estimation method for five-phase PMSM drives. The short-

circuit current is analytically modeled based on the developed 

equivalent circuit model. The real-time observation of the 

fault diagnosis index through an ESO enables online fault 

detection and location. Through sensitivity analysis of faults 

and motor parameters, five fault indicators are selected and 

collected under diverse operating conditions. Subsequently, A 

CNN model is trained to estimate the short-circuit turn ratio, 

enabling a quantitative assessment of fault severity. 

Furthermore, the inherent coupling between fault parameters 

is resolved. The operational reliability and diagnostic 

accuracy of the developed method are validated through 

simulations and experiments under diverse load conditions. 
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